nome (no)

europan 18

"green mineral park"

"After having been first matter, and then energy, nature is today becoming an interactive subject. It is ceasing to be an object, but this is bringing it all the more surely into the circuit of subjection."

— Jean Baudrillard, The Illusion of the End, as cited by Alan Berger in Reclaiming the American West

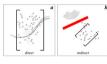
For us, Nome was not just a site, it was a paradox posed as a question: How to respond without reducing, How to intervene without subjecting it further.

At the heart of our proposal lies a simple but urgent act: to care.

Faced with the impending opening of a mine at Nome, a violent shift in the site's ecological rhythm, our design process began not with a masterplan, but with attention. Through a method of research by design, we made the **invisible** visible: tracking species, mapping flows, listening to the land. Each intervention emerges as an act of care, a measured response to what the site reveals, through its soil, its silences, its seasonal rhythms.

Our approach was grounded in extensive research on extractivism, environmental violence, and architectural ethics, drawing especially on the book *Climate Aesthetics: Essays on Anthropocene Art and Architecture* by Prof. Dr. Eray Çaylı. Inspired by this call to move from extraction to understanding, we rejected totalizing gestures.

Instead, we began by learning: naming each of the ~389 species that inhabit Nome.


But naming was only the beginning. Every gesture that followed was shaped not by what the land could give, but by what it asked us to protect. We mapped seasonal migration routes and areas of high animal density. We traced likely paths to and from water sources, studying the slope and permeability of the terrain to anticipate how both animals and water might move. We located habitats of species sensitive to noise, vibration, and light, and identified bird corridors and zones of sky access. We studied canopy cover and understory density to differentiate between quiet sanctuaries and exposed zones. We marked already-barren clearings to avoid additional deforestation, and read the *jordbunnskart* (soil maps) to understand which grounds were most fertile- so we could stay away from them.

In short, before designing, we listened.

Choosing to focus on Vindsås, despite the brief offering three other potential sites, was a decision rooted in fragility. We deliberately avoided the more accessible options with flatter terrain, existing infrastructure, or proximity to Lunde and Ulefoss. Instead, we turned our attention to the one that needed protection most: a biodiverse landscape with the highest concentration of wildlife, fertile soil, dense water networks, and steep topography. We believed that if we could articulate a set of principles to safeguard Vindsås, they could be adapted to other sites as well because Vindsås represented the most vulnerable, and therefore the most *urgent*, of all.

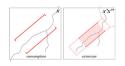
Our vision for Vindsås was divided into two zones: one we would never touch, and one where minimal, site-specific insertions could take place. The untouched zone, home to the highest density of wildlife and the site's largest water source, would be left entirely to its own ecological rhythms. In contrast, the proposed mining facilities are positioned on the eastern edge, where the forest is more sparsely populated and already divided by an existing road. This choice minimizes the number of trees removed during the site preparation phase and reduces ecological disruption.



As for the mine itself, we propose an alternative extractivist model: instead of vast, disconnected grey zones, extraction happens through smaller patches embedded within a network of continuous green infrastructure. This allows animals to continue using the site's ecological corridors and avoids severing the forest into isolated fragments.

When it comes to the landfill material generated through ongoing extraction operations, we reject the conventional method of selecting a distant dump site for disposal. Instead, we propose a system of sorting the material by aggregate size and repurposing it into building components for our architectural insertions. Gabion walls, compressed bricks, and rammed-earth-like forms are all produced using equipment already available within mining facilities, keeping carbon emissions low and eliminating the need for external sourcing. This approach, constructing through reclamation, offers not only environmental efficiency but also spatial flexibility. The modular nature of these elements allows them to be dismantled and reassembled elsewhere, adapting to changing needs over time.

Beyond their architectural role, we envision another layer of impact: a process of regeneration through compression. By blending landfill material with soil and mixed seeds collected during site preparation, and integrating this mixture beneath designated hiking trails, we activate the site's existing outdoor culture. As people walk these yellow-marked paths, the material is compacted underfoot. Seeds settle. Soil binds. Slowly, restoration takes root. Here, walking becomes caring.



One of the most critical issues is water. Through sectional studies, we observed that all surface and subsurface water sources on site are interconnected- flows merge, seep, and circulate regardless of visibility. If water must be used for mining operations, we argue it should come from the lowest-elevation source. This ensures minimal gravitational flow to other aquatic systems and reduces the risk of contaminating the broader network. In the age of the anthropocene, water is a shrinking and threatened resource, not just for humans, but for every species that shares this site. *Protecting it is not optional*; it is our collective responsibility

We also outline a longer-term direction for the future of the park. The mining operation is planned to expand toward the northeastern portion of Vindsås, where forest density is lower and an existing road already cuts through the terrain. To reduce the environmental footprint of transporting extracted material and landfill, we propose supplementing this road with an electric monorail system. Unlike diesel-fueled trucks, which can emit up to 0.27~kg of CO_2 per ton-kilometer, a monorail powered by renewable energy drastically lowers carbon emissions and reduces habitat disruption along the route.

This logistical intervention is part of a broader ambition: to make the mine in Vindsås a global model of *post-anthropocenic* practice, where extraction is no longer synonymous with destruction. In this model, even the act of carrying becomes part of the care.

The mine is not just a technical operation; it is an ecological rupture that at this point, is probably impossible to stop. We respond not with opposition, but with interventions that metabolize the disturbance. Using a 5x5 matrix that maps interactions between Earth, Water, Flora, Fauna, and Humans, we propose site-specific systems such as:

001 Spatial Insertions

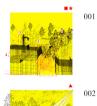
• habitat edge corridors (fauna × earth), where extraction zones are reimagined not as isolated scars but as patches embedded within continuous green infrastructure. These edges maintain uninterrupted wildlife corridors, allowing animals to move freely even as mining operations proceed. In areas adjacent to streams or wetlands, these green patches extend to form *riparian buffer zones*, ensuring the necessary protective distance, often 30 to 50 meters, is preserved to filter runoff, reduce erosion, and safeguard aquatic ecosystems. This represents a subtle yet radical shift in how conventional mining landscapes are established.

002 Ecological Insertions

• **photosynthetic lenses** (flora × flora) are white ceramic-painted timber disks, crafted from trees felled during the site preparation phase. The ceramic coating makes them weather-resistant and *maintenance-free*, while their reflective surfaces enhance photosynthesis by directing sunlight toward surrounding vegetation. Designed for Norway's short daylight periods, these passive devices help regenerate barren forest patches, whether degraded by mining or natural conditions, by supporting plant growth where it's most needed.

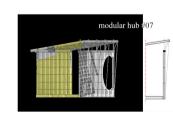
003 Architectural Insertions

• re-production hubs (human x human), these small scale modular and flexible architectural insertions are based on a recurrent bay of 12m x 16m. This module defines the composition of the complex as well as scanning the spatial rhythm of the communal spaces. We propose an architecture that is essential, compositionally characterised by the *trilithic system* and in which the structural scheme is clearly visible. Functionally, the hubs become responsible of resourcing as only %1 of the extracted mass will be rare earth elements. The remaining %99, what we call *leftover landscapes*, becomes the core of our spatial strategy. We propose that *no material leaves the site un-transformed*. Trees cut during clearing become timber frames and compressed panels. Coarse rocks are sorted and reused for structural gabions. Tailings are mixed with organic matter for technosols or compressed into bio-bricks. All materials produced, are used again to build the hubs on site.


Each of these processes is designed to run with zero heat and zero fire, favoring low-energy transformation techniques that use already available mining equipment. In doing so, industries begin to blend within the park, sharing infrastructure and workflows. These production logics are made visible through small-scale architectural insertions (hubs), inviting the communities of Lunde and Ulefoss to witness and participate in the act of remaking.

Alongside the examples described, 22 other insertions from the matrix support our approach, though they are not detailed here. We don't see the site as an industrial zone, but as a living testbed where extraction and regeneration co-exist in tension. In return, design becomes a way of staying with the trouble. We measure success not by output, but by how gently we intervene and how deeply we care.

From this foundation, we begin to weave the project over time, unfolding it through development phases that consider not just what is done, but when, how, and by whom.



conceptual corridors shown in white stripes over the mine

2025- today & care act: Rather than establishing the mine first and attempting to mitigate its impact afterward, we propose activating the park before the mine becomes operational. In a period marked by ecological crisis and unrestrained land consumption, greenwashing is not an acceptable strategy. The Green Mineral Park must assert itself from the outset as a deliberate spatial structure not as an after-thought, but as a defined framework that preserves, frames, and organizes the landscape as a shared resource. This pre-operational phase focuses on establishing early connections between local communities and the site through small-scale, minimal interventions: misting devices along hiking trails and acoustic installations to amplify forest soundscapes. We mark hiking trails gently with the color yellow as signage, as a stripe on a rock, or a single vertical plane in the soil signaling care without imposing control. As part of this early phase, local residents are encouraged to collect seeds, cuttings, or tree samples from areas designated for future extraction. This forms a living archive, preserving both the ecological and cultural memory of the site. It is a quiet act of resistance, not against mining but against forgetting.

2028-2030 "site prepartion & building": The first phase begins with delicate clearing, only where necessary. Trees removed during this stage are carefully documented and reused in the making of timber components. Basic infrastructure such as service roads, water lines, and energy connections are introduced with minimal disruption. Tunnels are excavated, and landfill generated are immediately repurposed as foundations for future hubs and pathways. No action here is neutral; each move is weighed in relation to its ecological cost. Once the groundwork is in place, the construction of architectural hubs begins. These modular units are made entirely from on-site materials, timber, coarse rock, tailings. Each hub is flexible in function: it may become a workshop, a sleeping shelter, a school. Their architecture is deliberately visible, structural, and honest. No landfill leaves the site without purpose; no form is fixed forever. Material transport across the site is handled by an electric monorail system running parallel to the existing road, minimizing emissions and avoiding heavy vehicular traffic that would otherwise disrupt soil and fauna.

2040-2100 "operational & expansion": The park begins to operate fully. Extraction occurs through patch-based interventions embedded in green corridors, allowing animals to continue moving through the site. Hubs shift roles as needed: a sleeping module becomes a lab, a workshop becomes a kitchen. Landfill by-products continue to be sorted, repurposed, and reintegrated into architecture or landscape. Water use is limited and monitored, drawn only from low-elevation sources to protect the hydrological web. The reality is that, despite best efforts, wildlife will be affected negatively by the mine. To address this, the operational phase includes ecological interventions: pollination stations on human-made barren patches, shadow paths enabling animals to move safely beneath elevated human circulation routes, and rammed earth water channels that extend into forest interiors for animals that may lose access to natural streams. Vegetated gabion walls are introduced as sound barriers near high-noise mining areas to protect species sensitive to acoustic disturbance. Around the mine's water source, planting buffers are established to filter runoff before it mixes with underground reservoirs. A living, working landscape unfolds, always in negotiation between extraction and care.

2200 rewilding & care act: After extraction ends, the site enters a phase of ecological repair. Hubs are dismantled or adapted for community and environmental use. Technosols restore the soil, while yellow-marked trails continue to bind seeded landfill through foot traffic. The former mine gradually fills with rainwater, forming a basin. A hydrogarden system on it is introduced to filter the water and support new habitats. In winter, it may freeze into an ice ring, offering seasonal use. In the end, nature returns, not as a spectacle, but as a quiet process of reintegration.

