RECODE THE ROAD - A Living Infrastructure for Soil, Ecology and Movement

1. Site Localization. A technical, fragile, traversable landscape

The site unfolds along the **L202**, a linear **road infrastructure** that connects the centers of **Bregenz**, **Hard**, **Fußach**, **and Höchst**, situated at the edges of **Lake Constance** and the **Rhine Delta**. But this linear geography is just a surface: what emerges, when observing the territory with the "deep gaze" is a layered landscape—one made of **tensions** and **discontinuities**, a **living section** where **mineral**, **hydrological**, **biological**, and **infrastructural** components intersect and overlap. Along the L202, often **conflicting dynamics** converge:

- · An agricultural landscapes that survive in fragments;
- · A delta that is protected yet incised;
- · An industrial fabric that retracts or transforms;
- Some wooded areas seeking ecological continuity;
- · A fast mobility infrastructure that cuts through but fails to connect.

The **identity** of this site is not defined by its **shape or position**, but by what is happening **beneath and around** it: the **erosion** of **agricultural soils**, **anthropic pressure** on **wetland systems**, the **loss of accessibility** at the edges, and the impact of **climate change** on the **water cycle** and **plant systems**.

Within this complex section, the **L202** is not simply an **object**, but a **gesture** that has **reshaped the landscape**. It is a **line** that pretends to be **neutral**, yet generates **deep material and immaterial effects**. The site is not a **perimeter**, but a **line of crisis**. And it is precisely from this **fragility** that the project draws its **strength**: to read the **L202** not as a **functional axis** to be improved, but as a **margin to be reactivated**, a **threshold to be re-coded**, a **hinge to be traversed**. "Recode the Road" is not merely a mitigation of infrastructure's impact; it becomes an active ecological stitching device. It reconnects a set of matrix habitats that structure the landscape of the Rhine Delta and Lake Constance. Though now fragmented, these habitats represent a vital ecological heritage. Their functional continuity is reimagined through the L202, transformed into a linear ecological corridor. The area between the Rhine delta and the shores of Lake Constance forms a highly complex **ecotonal system**, where **fluvial**, **lacustrine**, **marshland and agricultural environments** intersect, generating **dynamic ecological gradients**. These **ecotones**—natural and seminatural edges—act as high-biodiversity interfaces, hosting **specialized plant and animal communities** and strong seasonal variability.

H1. Open waters (lake, canals, river mouth)

Water is the primary matrix of this landscape. Lake Constance, irrigation canals, ditches, and the Rhine mouth form a fluid, dynamic system—under increasing threat from urban pressure and surface sealing. The project protects these spaces as both anchors and hinges of the ecological network, with overlooks, filtration edges, and lightweight platforms enabling new human-water interaction.

H2. Reeds and marshes

Marsh edges and reed beds hold exceptional biodiversity, often invisible in conventional landscapes. The project **strengthens their connectivity through ditch restoration**, reintroduction of hydrophilic species, and creation of vegetated buffer strips that filter runoff and provide wildlife habitat.

H3. Wet meadows, peatlands

These remnants of agrarian-ecological heritage are among the most endangered. The project treats them as **spaces of slowness and transition**: widened roadside zones managed with delayed mowing and low-impact planting, allowing coexistence between human use and ecological succession.

H4. Wooded bands, riparian forests

Tree-lined river edges are key ecological structures. The proposal strengthens them through tree rows and linear microforests that span across the L202, **creating "vegetal bridges" that enable wildlife passage and climate resilience**.

H5. Agricultural fields, edges, hedgerows

The traditional agrarian landscape—marked by irregular edges, hedgerows, and buffer fields—is under threat from homogenization. The project calls for an ecological reinterpretation: agricultural margins become biodiversity corridors, sometimes reshaped as community gardens, orchards, or productive rows, reweaving community ties into the landscape.

2. Decoding the Infrastructure: The Road as Threshold, Not Axis

In the new project framework, the L202 is reconfigured as the **sixth habitat**: a multifunctional ecological infrastructure integrating environmental devices, slow mobility systems, and ecosystemic functions, enhancing territorial connectivity and landscape resilience. The **L202** is a **high-efficiency linear infrastructure**, engineered for **fast throughput** across the flatland. Its **vectorial layout** appears **neutral and rational**, yet no infrastructure is ever truly neutral: it **inscribes** and **alters**. The L202 has **fragmented** what once formed **ecological continuities—wetlands**, **permanent grasslands**, **agricultural plots**, and **riparian forests—**now reduced to **marginal remnants**.

As direct intervention on the roadway of the L202 is not permitted, the project operates within the interstitial and marginal areas flanking the infrastructure, reimagining them as active zones for environmental mitigation, ecological connectivity, and social activation. These residual spaces—often underused or degraded—are redefined as functional and ecological corridors, accommodating vegetative buffers, micro-topographical adjustments, and low-impact programmatic uses, thus contributing to landscape regeneration and territorial resilience.

Where once the landscape's lateral flows were uninterrupted, they now collide with an impermeable asphalt interface. Our project reframes this rupture as an operative potential. We no longer read the L202 as a longitudinal connector, but as a transversal interface—a multifunctional ecological and productive hinge, embedded within a territorial system of flows. The land adjacent to the roadway is not residual, but a disconnected network of ecological services, waiting to be reintegrated. Though ecological corridors persist, they are disaggregated: truncated hedgerows, interrupted swales, and choked faunal passages.

To walk along the L202 becomes an act of environmental literacy—inhabiting a relational matrix of seasonality, care, biological productivity, and place-based memory. The spatial interface shifts: the road becomes an activated platform, punctuated by ecological modules—shaded micro-habitats, stormwater retention cells, and field-access nodes. The green infrastructure is not ornamental, but structural, enabling inter-species connectivity, bioclimatic resilience, and adaptive reuse of space. The L202 is not mitigated, but transcoded—converted into a green spine of environmental computation, able to host life, modulate hydrological regimes, and support low-carbon mobility.

The road coul become a **responsive linear system**, **hybridized**, **reversible**, **sensorial**, and **biocompatible**. It **absorbs rather than resists**, **connects rather than severs**. A **landscape protocol** that **rewrites the infrastructural grammar**: transforming a mono-functional system into a **multi-scalar ecological interface** that reestablishes **depth**, **permeability**, and **territorial meaning**.

The landscape is not the backdrop of the intervention—it is its performative engine. The design does not begin with the morphology of the road, but with a systemic reading of the environmental matrix that surrounds, permeates, and reacts to the infrastructure. The landscape is adopted as a **design protocol**, a platform for decoding and reprogramming the L202 as an adaptive and hybrid system. The project avoids the design of isolated objects and instead constructs **territorial devices**—systems that interface with hydrodynamic patterns, geotechnical structures, and socio-ecological cycles. This logic is organized through three intertwined operational layers:

S - Actions: Solid

Topological surfaces, structural substrates, and geospatial geometries.

The design addresses the **material infrastructure** of the corridor: the **asphalt layer is reduced, reconfigured**, and **perforated**. Edge zones are **graded and contoured** using in-situ soil, enabling **surface water management** and **microtopographic diversification**. The intervention introduces **pervious materials**, such as **geocells**, **stabilized aggregates**, **porous pavements**, and **bio-based composites**. The solid layer functions as a **load-bearing platform** for ecological and programmatic retrofitting.

F – Actions: Fluid

Hydrological logic, runoff dynamics, and atmospheric integration.

The road ceases to be a barrier to hydrology and becomes an **active water-sensitive infrastructure**. Existing **ditch networks**, **bioswales**, and **depression zones** are reactivated or reengineered to create a **multiscalar retention system**. **Constructed wetlands**, **vegetated infiltration trenches**, and **attenuation ponds** are embedded within the road's cross-section. Stormwater is choreographed as a **temporal and experiential event**, exposing seasonal rhythms and ecological cycles. The fluid register brings **resilience**, **delay**, and **visibility** to water flows.

B – Actions: Biotic

Living systems, agroecological layers, and successional dynamics.

The biotic register activates the site as a **biosocial interface**. Roadside verges and median strips are transformed into **biodiversity corridors**, integrating **native planting palettes**, **pollinator strips**, and **adaptive vegetation zones** calibrated to edaphic conditions. Spaces are allocated for **agroforestry**, **productive hedgerows**, and **low-maintenance urban agriculture**, co-managed by local actors—schools, community cooperatives, and land stewards. Biodiversity is deployed not as mitigation, but as a **productive algorithm** shaping ecological intensity and ecosystem services.

These three registers are not isolated: they **superimpose**, **hybridize**, **and co-evolve** across every spatial node. Each micro-intervention becomes a **component of a systemic retrofit**, where landscape functions as a **spatial operating system**, responsive to pressure, friction, and feedback. The output is neither a conventional greenway nor a generic slow mobility corridor. It is a **multifunctional landscape infrastructure** that **absorbs**, **filters**, **cultivates**, **and narrates**—a **replicable territorial framework** capable of **translating infrastructural space into a metabolically active and socially embedded environment**.

The diagram functions as a **synoptic map of integrated interventions along the L202**, establishing a replicable system of **adaptive territorial devices**. The **red trace** indicates the route of **existing cycle lanes**, enhanced by a **smart surface-based signage protocol**: a low-impact codification that increases visibility and accessibility without major civil works. **Tree rows** (green icons) operate as **modular environmental mitigation units**, strategically positioned to reduce **road-related acoustic impact** while reinforcing the **ecological stratification** of the road's edge. Based on **GIS acoustic pollution datasets**, the placement and density of the tree rows follow a **data-driven logic**, targeting high-impact zones (solid green dots). **Ecological corridors** are translated into **dynamic patterns**, adjustable to local conditions and scalable across the territory. Integrated **dashed cycling paths** act as **secondary connective infrastructure**, linking fragmented nodes of ecological, social, and productive relevance.

At intersections with the primary road, the bike lanes are **expanded into multifunctional buffer zones**, designed to host **slow mobility**, **ecosystemic devices** (e.g., wetlands, bioswales, community gardens), and temporary infrastructures. These **adaptive sections** function as **ecological and infrastructural hubs**, suitable for replication in similar landscapes. The entire system acts as a **scalable design protocol**: a grid of interoperable soft interventions that trigger **progressive regeneration processes** along linear infrastructures in peri-urban and rural contexts. Through the convergence of **passive mitigation**, **ecological connectivity**, **and programmable signage**, the project defines a **new environmental infrastructure platform** for the 21st-century landscape.

Noise reduction along the L202 is not tackled through artificial sound barriers or isolated interventions, but rather through a **diffuse and integrated environmental mitigation strategy**, embedded in the landscape design. **Tree rows**— arranged continuously or in modular segments along the roadside—serve as **natural sound-absorbing buffers**, dampening vehicle noise propagation and improving ambient comfort for nearby zones.

The use of **native tree species with dense canopies and persistent foliage** ensures year-round effectiveness, including in winter. In the most exposed sections (e.g., higher traffic volumes, proximity to sensitive areas, GIS-based noise analysis), these buffers are **intensified and combined with mixed hedgerows**, generating **layered vegetative filters** with high acoustic absorption capacity. These actions are supported by **soil reshaping and edge reconfiguration**, introducing **microtopography**, **berms**, **and earthen sculpting** that reduce sound reflection and enhance absorption through both vegetation and terrain.

3. Nodes: Local Devices for Systemic Transformations

The project does not act uniformly along the entire route. The L202 is too long, too articulated, too heterogeneous. For this reason, the strategy focuses on selected **nodes**—specific points where **territorial tensions** become more visible and where **small-scale interventions** can trigger **large-scale effects**. These nodes do not correspond to traffic junctions or intersections. On the contrary, they **emerge from the landscape**: places where the infrastructure bends, widens, intersects with fragile elements such as waterways, agricultural margins, or dispersed settlements. Each node is conceived as an **intensive section**, where the three design registers—**solid**, **fluid**, **biotic**—converge, transforming the road into something else.

Each node is not only a variation of the road cross-section, but also a **narrative episode**, telling a different way of inhabiting the infrastructure: as a place for exchange, contact with nature, and **shared stewardship**. Their distribution is not symmetrical but responds to **voids**, **latent opportunities**, and **landscapes to be reactivated**. The nodes thus become **replicable design matrices—minimal yet transformative grafts** capable of introducing **rhythm and porosity** to an infrastructure originally conceived for continuity.

Node Höchst – The Ecological-Recreational Threshold - Reconnecting farmland and swamp forest, weaving infrastructure into daily life

In southern Höchst, the L202 slices between the agricultural land to the west and the swamp-forest to the east, bisected by an industrial zone. Here, an existing green corridor—served by a cycle path—abruptly ends, leaving a key ecological passage broken.

Our proposal reconnects the landscape on multiple levels:

- **Terrace mounds** created by shifting turf from the road edges to form a textured buffer, absorbing noise and shielding adjacent vegetation.
- New tree copses of native species acting as green barriers to screen sound and pollution.
- A **natural playground** inserted into a former weedy area, with wooden seating, gentle earth berms, and canopy formed by young and mature trees.
- The existing parking lot is reimagined as a low-maintenance fruit orchard, seamlessly connected to cycling and walking paths leading toward the marsh.

Here, the L202 becomes a **porous passage**, a threshold where infrastructure meets recreation and ecology, not a barrier. "Here the road does not divide—it filters. The roadside becomes fertile, and infrastructure invites play and harvest."

Node Fußach – The Urban Threshold - Redefining the entrance: margins as meeting places

At Fußach, the L202 **splits**, forming the main route along the delta and the access to the town center, anchored by the **Despar supermarket**, a local hub. Between these lanes, **patches of neglected green**—grassy triangles, verge strips, empty parking edges—persist. The proposal transforms these into **pocket parks** and a **shared space** for cars, bikes, and pedestrians, erasing traditional hierarchies of mobility. A new **paved pattern**, **low landscaping**, **and horizontal taming** create a recognisable threshold into Fußach. These minimal green pockets—**benches**, **gnarled trees**, **gravel clearings**—allow informal gatherings and slow movement. The L202 is no longer just a road. "This node is not an intersection—it is the moment the road becomes town."

Node Hard - The Wilding Infrastructure - Reconnecting school, watercourse, and lakeshore

In Hard, the L202 interrupts a vital ecological corridor stretching from the **school + train station in the north** to the **Lake Constance shoreline in the south**—lined by a natural watercourse. Today, infrastructure severs this flow.

The strategy: **let it grow**. Spreading species are planted in the **buffer zones** at the verge, weaving back the L202 into the green corridor. Vegetation envelops the roadside, making the road **gradually wild**. A **horizontal signage system**: symbols, leaf impressions, and textures slow the car flow and cue potential wildlife passages. The **cycleway is extended** along the approach to the station, reworking the **Lidl parking lot** into a temporary installation site—a seasonal green ground for events. Here, nature is not ornament—it **reclaims time**, turning the road into a **permeable membrane** for water, vegetation, animals, and people. "To let it grow is a design choice. To wild is care.

Node Bregenz - The City's Green Portal - Framing entry through water, vegetation, and slow mobility

At the bridge entrance to Bregenz, the L202 meets the urban core. This once purely functional passage becomes a welcoming green gateway, a dialog between the new left-side tree canopy and the historic built frontage on the right. The pedestrian zones are reorganized: expanded cycle paths, permeable paving, and clear wayfinding support shared movement modes. The watercourse is activated through wooden boardwalks, viewing platforms, and ramps, allowing people to pause, interact, and trace the natural flow toward the lake.

We propose also strengthening **a pedestrian route parallel to the L202**, lined with historic façades, offering an intimate, character-rich alternative to the main road, adding **a mosaic of urban thresholds**. "Urban landscape begins with a planting gesture. Entry is not signage—it's a space that slows us down."